Подбираем тайминги для DDR3 ECC \ non-ECC

ram2-300x230

Основными параметрами оперативной памяти, как известно, являются объем, а также тактовая частота. Но помимо этого довольно важным, хотя и не всегда учитываемым параметром являются характеристики латентности памяти или так называемые тайминги. Тайминги оперативной памяти определяются количеством времени, которое требуется микросхемам ОЗУ, чтобы выполнить определенные этапы операций чтения и записи в ячейку памяти и измеряются в тактах системной шины. Таким образом, чем меньше будут значения таймингов модуля памяти, тем меньше модуль будет тратить времени на рутинные операции, тем большее быстродействие он будет иметь и, следовательно, тем лучше будут его рабочие параметры. Тайминги во многом влияют на производительность работы модуля ОЗУ, хотя и не так сильно, как тактовая частота.

Таблицы таймингов DDR3

Следующие таблички помогут подобрать наиболее удачные и работоспособные тайминги для памяти DDR3 в китайских материнских платах сокета 2011 и не только.

Важно помнить, что стабильность системы, как и возможность взять ту или иную частоту зависит не только от самой памяти, но и от используемого процессора (контроллер памяти находится именно в нём) и материнской платы.

Не лишним также будет узнать, какие чипы установлены в модуле памяти. Для чипов производства Samsung можно воспользоваться этой инструкцией, для чипов других производителей — не сложно нагуглить.

tajmingi-300x203

Классическая таблица таймингов с форума Overclockers

timings-300x127

Еще один вариант таблицы. Обратите внимание на последние 4 столбца: параметр RFC выставляется в зависимости от ёмкости чипов. Определить его просто: поделите общий объём модуля на количество распаянных на нём чипов.

Некоторые особенности работы памяти на 2011 сокете

  • Частота контроллера памяти привязана к частоте ядер, поэтому скорость чтения\записи у младших моделей будет несколько ниже, чем у старших.
  • Небольшая разница между чтением и записью на процессорах второго поколения — это нормально.
  • Как ни странно, некоторые процессоры второго поколения зачастую берут более низкую частоту памяти, чем аналогичные процессоры первого поколения. Например, E5 2620 v2 и E5 2630 v2 обычно не способны работать с памятью выше 1600 Мгц. E5 2650 v2 как правило не берет больше 1866 Мгц.

Для большинства конфигураций хорошим результатом будет работа памяти на частоте 1866 Мгц с задержками менее 70 ns. В четырехканале при этом достигается скорость ~50 Гб\с.

Взять частоту в 2133 Мгц — более сложная задача, доступная уже не каждому процессору и набору памяти.

Для систем, ограниченных порогом в 1600 Мгц, хорошим решением будет найти максимально низкие стабильные тайминги. Ну а оставаться на частоте в 1333 Мгц даже при низких таймингах смысла довольно мало, скорость памяти по современным меркам будет весьма посредственной.

Как узнать скорость записи\чтения и латентность памяти

Проще всего — запустив тест кэша и памяти в Aida64. После прохождения программа покажет все необходимые данные, а также текущую скорость памяти и основные тайминги. Сохранив скриншот этого окна, можно будет легко сравнить результаты после изменения конфигурации ram.

aida64-300x288

Результат теста кэша и памяти

Aida 64 — платный софт с ограниченным бесплатным функционалом. Но если покупать полноценную версию по каким-то причинам не хочется, ключ для активации легко находится в том же гугле.

Как проверить стабильность памяти

Если система запустилась на желаемой частоте с выбранными таймингами, это еще не значит, что она стабильна. Чтобы не словить синий экран в процессе игры или работы — проверяйте стабильность памяти. Стандартные тесты, вроде Aida64 могут и не выявить ошибки в работе ram. Лучше использовать для этого специальный софт, например TestMem5 (программа бесплатная).

testmem5-300x297

Помимо стандартных настроек, существуют и пользовательские конфиги для TestMem. Одним из наиболее популярных считается конфиг от 1usmus. Для его использования — замените содержимое файла MT.cfg в папке bin программы. Стандартные настройки можно забэкапить в другой файл.

Memory Test config file v0.02
Copyrights to the program belong to me.
Serj
testmem.tz.ru
[email protected]

[Main Section]
Config Name=Default
Config Author=1usmus_v2
Cores=0
Tests=15
Time (%)=100
Cycles=5
Language=0
Test Sequence=6,12,2,10,5,1,4,3,0,13,9,7,8,1,11,14

[Global Memory Setup]
Channels=2
Interleave Type=1
Single DIMM width, bits=64
Operation Block, byts=64
Testing Window Size (Mb)=880
Lock Memory Granularity (Mb)=16
Reserved Memory for Windows (Mb)=128
Capable=0×1
Debug Level=7

[Window Position]
WindowPosX=1105
WindowPosY=691

[Test0]
Enable=1
Time (%)=100
Function=RefreshStable
DLL Name=bin\MT0.dll
Pattern Mode=0
Pattern Param0=0×0
Pattern Param1=0×0
Parameter=0
Test Block Size (Mb)=0

[Test1]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=1
Pattern Param0=0x1E5F
Pattern Param1=0×45357354
Parameter=0
Test Block Size (Mb)=16

[Test2]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0x14AAB7
Pattern Param1=0x6E72A941
Parameter=254
Test Block Size (Mb)=32

[Test3]
Enable=1
Time (%)=100
Function=MirrorMove
DLL Name=bin\MT0.dll
Pattern Mode=0
Pattern Param0=0×0
Pattern Param1=0×0
Parameter=1
Test Block Size (Mb)=0

[Test4]
Enable=1
Time (%)=100
Function=MirrorMove128
DLL Name=bin\MT0.dll
Pattern Mode=0
Pattern Param0=0×0
Pattern Param1=0×0
Parameter=510
Test Block Size (Mb)=0

[Test5]
Enable=1
Time (%)=100
Function=MirrorMove
DLL Name=bin\MT0.dll
Pattern Mode=0
Pattern Param0=0×0
Pattern Param1=0×0
Parameter=4
Test Block Size (Mb)=0

[Test6]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0x5D0
Pattern Param1=0x143FBC767
Parameter=125
Test Block Size (Mb)=1

[Test7]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=0
Pattern Param0=0×0
Pattern Param1=0×0
Parameter=0
Test Block Size (Mb)=2

[Test8]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0x153AA
Pattern Param1=0xDC7728C0
Parameter=358
Test Block Size (Mb)=0

[Test9]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=0
Pattern Param0=0×0
Pattern Param1=0×0
Parameter=0
Test Block Size (Mb)=4

[Test10]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0x2305B
Pattern Param1=0x97893FB2
Parameter=477
Test Block Size (Mb)=8

[Test11]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0x98FB
Pattern Param1=0x552FE552F
Parameter=8568
Test Block Size (Mb)=16

[Test12]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0xC51C
Pattern Param1=0xC50552FE6
Parameter=787
Test Block Size (Mb)=32

[Test13]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0xB79D9
Pattern Param1=0x253B69D94
Parameter=8968
Test Block Size (Mb)=64

[Test14]
Enable=1
Time (%)=100
Function=RefreshStable
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0x2305A
Pattern Param1=0x17893AB21
Parameter=265
Test Block Size (Mb)=64

Успешным считается прохождение теста, при котором нет ни одной ошибки.

Где можно недорого докупить памяти

С массовым переходом на DDR4, память предыдущего поколения хоть и не сильно, но подешевела. Приобрести DDR3 можно на aliexpress, это наиболее выгодный и удобный способ.

Обычные десктопные модули можно купить здесь (Zifei), здесь (Atermiter) и вот тут (Kingston HyperX \ Fury). С недавних пор память выпускает даже Huananzhi.

Модули для ноутбуков продаются здесь и здесь.

Недорогая серверная DDR3 ECC REG есть у следующих продавцов:

Оригинальные серверные модули Samsung 1866 Мгц можно найти у этого продавца.

Тайминг, оперативная память и производительность ПК

Компьютерная терминология иногда поражает своей сложностью. Из-за этого пользователь и одновременно конечный покупатель сталкивается с определенными проблемами выбора во время приобретения компьютера или обновления его конфигурации. К одной из важных характеристик ПК относится так называемый тайминг. Оперативная память характеризуется как параметром частоты, на которой она работает, так и размером задержек обращения к другим модулям компьютера.

тайминг оперативная память

Перед тем как переходить к ответу на вопрос, что такое тайминг, опишем основной принцип работы ОЗУ — оперативного запоминающего устройства.

Как работает «оперативка»

Оперативная память (ОЗУ, RAM) — это одна из важнейших составляющих частей любого компьютера. В ней временно сохраняются данные, необходимые для работы процессора. Передача информации в этом случае осуществляется непосредственно от блока памяти на ядро или же через особую сверхбыструю память. Если говорить простыми словами, то оперативная память — это несколько микрочипов, которые хранят данные всех запущенных пользователем программ. Но разве нельзя хранить все это на жестком диске, ведь это тоже память? К сожалению нет. Все дело в скорости и надежности. Жесткий диск является механическим устройством с низкой скоростью работы (по сравнению с потребностями процессора) и ограниченным ресурсом. ОЗУ лишена этих недостатков, она быстра, и ее ресурс не зависит от количества обращений.

Классификация

тайминги памяти

Существует две разновидности памяти:

  • SRAM — статический тип ОЗУ;
  • DRAM — динамический тип ОЗУ.
  • Без углубления в особенности технической реализации SRAM-памяти можно сказать, что такие планки отличаются высокой скоростью. Задержки и передача данных в блоке ОЗУ происходит моментально. Но, к сожалению, такая реализация отличается дороговизной. К тому же объемы модуля памяти ограничены сравнительно большими размерами транзисторов. Модули SRAM используются в качестве сверхбыстрой кэш-памяти, которую применяют на процессорах, жестких дисках и других модулях ПК.

    Динамический тип ОЗУ — это привычные всем прямоугольные планки, которые располагаются на материнской плате. Такая память отличается сравнительной дешевизной и большими объемами. Но ее блоки имеют свои недостатки:

  • Так как планка содержит в себе конденсаторы, то необходимо регулярно «регенерировать» заряд в них для того, чтобы данные не пропали. Эту задачу выполняет центральный процессор. Но во время такого обращения к памяти приостанавливаются все операции с ней.
  • Скорость работы такой планки гораздо меньше, чем у статической.
  • Немалую роль играет и правильно подобранный тайминг. Оперативная память с большими объемами и высокой частотой не всегда сможет показать необходимую продуктивность ввиду высоких задержек.
  • Типы оперативной памяти

    На данный момент существует всего 4 типа модулей памяти:

  • DDR — устаревший тип ОЗУ, который используется на очень старых компьютерах.
  • DDR2 – блоки подобной ОЗУ еще можно встретить в старых ПК в госструктурах и учебных заведениях. Скорость работы такой памяти не позволяет справляться с высоконагруженными современными приложениями, но она достаточна для работы с текстовыми редакторами и для серфинга в сети Интернет.
  • DDR3 — наиболее распространенный модуль памяти. Потребление энергии на 40% меньше чем у предыдущего типа, а скорость работы такой памяти гораздо выше.
  • DDR4 — эволюционное развитие оперативной памяти. Такие модули способны полностью удовлетворить все запросы современного пользователя. При оптимальной конфигурации блок может обеспечить пропускную способность равную 34,1 ГБ / c.
  • Тайминги памяти

    Теперь мы знаем, что из себя представляет ОЗУ. Ну, а что же такое тайминг? Это задержка между отправкой и выполнением команды шины памяти, которая измеряется в тактах.

    выставить тайминги оперативной памяти

    DRAM состоит из ячеек, объединенных в двумерные массивы. Структура подобна решетке, в узлах которой находятся ячейки. Для обращения к узлам контроллер должен знать их адрес, состоящий из номера строки и столбца (координат). Отдельные массивы с одинаковым размером ячеек объединяются в так называемые банки.

    Таким образом, контроллер сначала обращается к банку с адресом строки посредством сигнала RAS. Затем происходит поиск необходимой строки — это цикл тайминга RAS to CAS Delay. После этого контроллер шлет номер столбца при помощи CAS-сигнала. Ожидание ответа на такой запрос называется CAS Latency. Тайминг под названием RAS Precharge обозначает время между командами закрытия и повторной активации строки, Active to Precharge Delay – между командами активации и закрытия. Command Rate – это минимальный интервал между двумя любыми командами.

    Покупая новую планку ОЗУ можно очень легко определить тайминг. Оперативная память маркируется стандартной схемой: DDR3 (частота) CAS Latency — RAS to CAS DELAY — RAS Precharge — Cycle Time, что в реальности выглядит как DDR3 2133 9-12-12-28.

    Что лучше — быстрая память или меньшие задержки?

    Что такое тайминг

    В первую очередь необходимо обращать внимание на тайминг. Оперативная память с высокой частотой может работать медленно, потому что обращение к процессору имеет гораздо меньшую скорость, а поэтому такое преимущество не будет реализовано. В то же время задержки остаются всегда на стандартном уровне, естественно, если не выставить тайминги оперативной памяти вручную.

    Так, например, память DDR2 1600 6-7-6-18 намного быстрее, чем DDR3 1866 9-9-9-24. Как видим, во втором случае имеем более совершенное поколение ОЗУ с более высокой частотой, но слишком большие задержки просто нивелируют этот факт. Приобретая новую оперативную память, старайтесь выбирать такую модель, которая имеет минимально возможные задержки. Этим вы обеспечите себе высокую производительность компьютера в целом.

    Тайминги. Какой лучше тайминг оперативной памяти 9-9-9-24 или 9-9-9-27? p\s можно рассказать подробно про Тайминги

    Другое название этого термина латентность, CAS Latency (CAS Latency = CL), то есть временная задержка сигнала. Обычно эти временные задержки так и называют тайминги и для краткости записывают в виде: 2-2-2 (например) . Это записанные по порядку следующие параметры: CAS Latency, RAS to CAS Delay и RAS Precharge Time. Они могут принимать значения от 2 (линейка модулей памяти Kingston HyperX, OCZ) до 9. От них в значительной степени зависит пропускная способность участка процессор-память и, как следствие, быстродействие основных компонентов системы.

    Пример из практики: система с памятью на частоте 100 МГц с таймингами 2-2-2 обладает примерно такой же производительностью, как та же система на частоте 112 МГц, но с задержками 3-3-3. Другими словами, в зависимости от задержек, разница в производительности может достигать 10 %.

    Мера таймингов такт. Таким образом, каждая цифра в формуле 2-2-2 означает задержку сигнала для обработки, измеряемая в тактах системной шины. Если указывается только одна цифра (например, CL2), то подразумевается только первый параметр, то есть CAS Latency. Остальные при этом не обязательно равны ему! Практика показывает, что обычно прочие параметры выше, а значит и память менее производительна (то есть это маркетинговый ход, в спецификации указать один тайминг, который не дат представления о задержках памяти при выполнении иных операций) .

    Иногда формула таймингов для памяти может состоять из четырх цифр, например 2-2-2-6. Последний параметр называется DRAM Cycle Time Tras/Trc и характеризует быстродействие всей микросхемы памяти. Он определяет отношение интервала, в течение которого строка открыта для переноса данных (tRAS RAS# Active time), к периоду, в течение которого завершается полный цикл открытия и обновления ряда (tRC Row Cycle time), также называемого циклом банка (Bank Cycle Time).

    Производители обычно снабжают свои чипы, на основе которых построена планка памяти, информацией о рекомендуемых значениях таймингов, для наиболее распространенных частот системной шины. Просмотреть эту информацию можно например программой CPU-Z.

    С точки зрения пользователя, информация о таймингах позволяет примерно оценить производительность оперативной памяти, до е покупки. Таймингам памяти поколения DDR придавалось большое значение, поскольку кеш процессора был относительно мал и программы часто обращались к памяти. Таймингам памяти поколения DDR3 уделяется гораздо меньшее внимания, поскольку современные процессоры (например Intel Core DUO и Intel I5,I7) имеют относительно большие L2 кеши и снабжены (опять же относительно) огромным L3 кеш, что позволяет этим процессорам гораздо реже обращаться к памяти, а в некоторых случаях программа целиком помещается в кеш процессора. Имя параметраОбозначениеОпределение CAS-латентностьCLЗадержка между отправкой в память адреса столбца и началом передачи данных. Время, требуемое на чтение первого бита из памяти, когда нужная строка уже открыта. Row Address to Column Address DelayTRCDЧисло тактов между открытием строки и доступом к столбцам в ней. Время, требуемое на чтение первого бита из памяти без активной строки TRCD + CL. Row Precharge TimeTRPЧисло тактов между командой на предварительный заряд банка (закрытие строки) и открытием следующей строки. Время, требуемое на чтение первого бита из памяти, когда активна другая строка TRP + TRCD + CL. Row Active TimeTRASЧисло тактов между командой на открытие банка и командой на предварительный заряд. Время на обновление строки. Накладывается на TRCD. Обычно примерно равно сумме трх предыдущих чисел.

    Тайминг оперативной памяти — это время ее отклика, чем ниже — тем лучше.

    Другое название этого термина — латентность, CAS Latency (CAS Latency = CL), то есть временная задержка сигнала. Обычно эти временные задержки так и называют — тайминги и для краткости записывают в виде: «2-2-2» (например) . Это записанные по порядку следующие параметры: CAS Latency, RAS to CAS Delay и RAS Precharge Time. Они могут принимать значения от 2 (линейка модулей памяти Kingston HyperX, OCZ) до 9. От них в значительной степени зависит пропускная способность участка «процессор-память» и, как следствие, быстродействие основных компонентов системы. Пример из практики: система с памятью на частоте 100 МГц с таймингами 2-2-2 обладает примерно такой же производительностью, как та же система на частоте 112 МГц, но с задержками 3-3-3. Другими словами, в зависимости от задержек, разница в производительности может достигать 10 %. Мера таймингов — такт. Таким образом, каждая цифра в формуле 2-2-2 означает задержку сигнала для обработки, измеряемая в тактах системной шины. Если указывается только одна цифра (например, CL2), то подразумевается только первый параметр, то есть CAS Latency. Остальные при этом не обязательно равны ему! Практика показывает, что обычно прочие параметры выше, а значит и память менее производительна (то есть это маркетинговый ход, в спецификации указать один тайминг, который не даёт представления о задержках памяти при выполнении иных операций) . Иногда формула таймингов для памяти может состоять из четырёх цифр, например 2-2-2-6. Последний параметр называется «DRAM Cycle Time Tras/Trc» и характеризует быстродействие всей микросхемы памяти. Он определяет отношение интервала, в течение которого строка открыта для переноса данных (tRAS — RAS# Active time), к периоду, в течение которого завершается полный цикл открытия и обновления ряда (tRC — Row Cycle time), также называемого циклом банка (Bank Cycle Time). Производители обычно снабжают свои чипы, на основе которых построена планка памяти, информацией о рекомендуемых значениях таймингов, для наиболее распространенных частот системной шины. Просмотреть эту информацию можно например программой CPU-Z. С точки зрения пользователя, информация о таймингах позволяет примерно оценить производительность оперативной памяти, до её покупки. Таймингам памяти поколения DDR придавалось большое значение, поскольку кеш процессора был относительно мал и программы часто обращались к памяти. Таймингам памяти поколения DDR3 уделяется гораздо меньшее внимания, поскольку современные процессоры (например Intel Core DUO и Intel I5,I7) имеют относительно большие L2 кеши и снабжены (опять же относительно) огромным L3 кеш, что позволяет этим процессорам гораздо реже обращаться к памяти, а в некоторых случаях программа целиком помещается в кеш процессора. Имя параметраОбозначениеОпределение CAS-латентностьCLЗадержка между отправкой в память адреса столбца и началом передачи данных. Время, требуемое на чтение первого бита из памяти, когда нужная строка уже открыта. Row Address to Column Address DelayTRCDЧисло тактов между открытием строки и доступом к столбцам в ней. Время, требуемое на чтение первого бита из памяти без активной строки — TRCD + CL. Row Precharge TimeTRPЧисло тактов между командой на предварительный заряд банка (закрытие строки) и открытием следующей строки. Время, требуемое на чтение первого бита из памяти, когда активна другая строка — TRP + TRCD + CL. Row Active TimeTRASЧисло тактов между командой на открытие банка и командой на предварительный заряд. Время на обновление строки. Накладывается на TRCD. Обычно примерно равно сумме трёх предыдущих чисел.

    какой тайминг лучше для озу 800мгц? 6 или 6-6-6-18

    Как узнать тайминг . по маркировке или КАК .

    «DDR3-1333 DDR3 SDRAM (9-9-9-24 @ 666 МГц) (8-8-8-22 @ 609 МГц) (7-7-7-20 @ 533 МГц) (6-6-6-17 @ 457 МГц)» не надо печалится просто тайминг в bios ставишь 8-10-10-23 и с666мгц поднимается без разгона 687мгц только не забудь охлаждение смастерить для оперативки.

    В числе участников — модули памяти Silicon Power, NCP, Patriot, GeIL, Kingston, Samsung, основанные на микросхемах Elpida, Micron, Samsung. Обзор, разгон, краткий список модулей и комплектов памяти объемом 8 Гбайт на модуль и использованных в них микросхем.

    Страницы материала

    Результаты разгона: Kingston KVR1333D3N9/8G, Samsung M378B1G73BH0-CH9, список модулей и комплектов памяти объемом 8 Гбайт, заключение

    Kingston KVR1333D3N9/8G (Elpida J4208EASE-DJ-F) DDR3-1333 8192 Мбайта

    Таблица поддерживаемых сочетаний частот и таймингов из SPD:

    522x300 10 KB. Big one: 522x1447 33 KB

    реклама

    График с результатами разгона:

    600x400 15 KB

    Оптимальные тайминги: X-(X-2)-(X-3).

    Без потерь по частоте можно понизить RAS to CAS Delay (tRCD) на двойку и RAS Precharge (tRP) на тройку относительно CAS Latency (tCL).

    Реакция на изменение напряжения: слабая, но есть во всем интервале от 1.35 В до 1.85 В и не зависит от установленных таймингов.

    Минимальные тайминги для частоты 1333 МГц с напряжением 1.50 В: 8-6-5-15 1T

    Samsung M378B1G73BH0-CH9 (SEC K4B4G0846B-HCH9) DDR3-1333 8192 Мбайта

    522x300 10 KB. Big one: 522x1651 39 KB

    600x450 18 KB

  • X-(X+2)-(X+2) на высоких частотах (1866-2400 МГц);
  • X-(X+1)-(X+1) на низких частотах (1333-1600 МГц).
  • Реакция на изменение напряжения:

  • С ровными таймингами: отсутствует;
  • С оптимальными таймингами:
    • От 1.35 B до 1.65 B: хорошо масштабируется по частоте (200-300 МГц);
    • От 1.65 B до 1.75 B: слабо масштабируется по частоте (10-20 МГц);
    • От 1.75 B до 1.80 B: небольшое снижение частоты (10-20 МГц).
    • Минимальные тайминги для стандартных частот:

    • Для частоты 1333 МГц с напряжением 1.50 В: 6-7-7-15 1T;
    • Для частоты 1600 МГц с напряжением 1.50 В: 7-8-8-15 1T;
    • Для частоты 1866 МГц с напряжением 1.50 В: 8-10-10-15 1T;
    • Для частоты 2133 МГц с напряжением 1.50 В: 9-11-11-15 1T.
    • Десятиминутная проверка в LinX:

      Разгон на максимальную частоту памяти в CPUZ – 2600 МГц с таймингами 11-12-12-28 1T и напряжением 1.75 В:

      И в завершение еще один тест — возможность совместной работы шести модулей на микросхемах трех разных типов (Samsung M378B1G73BH0-CH9, Patriot_PSD38G13332, GeIL GB316GB1600C10DC) общим объемом 48 Гбайт в трехканальном режиме на материнской плате ASUS Rampage III Black Edition на частоте 1465 МГц (тайминги не оптимизировалась).

      Список модулей и комплектов памяти объемом 8 Гбайт

      Чтобы облегчить поиск и выбор оперативной памяти для разгона, основанной на «правильных» микросхемах, силами участников оверклокерских форумов формируются списки, по которым можно определить, какие микросхемы памяти используются для производства тех или иных модулей и комплектов оперативной памяти. Есть даже отдельный сайт, целиком посвященный этой теме – RAM List.

      Но на таких ресурсах сейчас в основном собирается информация по DDR3 памяти с плотностью микросхем в 1 Гбит (наиболее часто используемой оверклокерами из-за лучшего соотношения частот и таймингов) и по DDR3 памяти с плотностью микросхем в 2 Гбит (наиболее высокий разгон по частоте, пусть и с большими таймингами). А по DDR3 памяти с плотностью микросхем в 4 Гбит почти ничего нет, как из-за относительной новизны такой памяти, так и благодаря её меньшей распространенности (особенно среди оверклокеров).

      По этой причине был собран свой собственный небольшой список, источником информации для которого послужили QVL-списки производителей материнских плат, сайты интернет-магазинов с фотографиями модулей памяти и другие.

      Список модулей и комплектов памяти объемом 8 Гбайт на модуль
      и использованных в них микросхем

      Производитель
      модуля
      Маркировка
      модуля
      Тип памяти Объём, Мбайт Производитель
      микросхем
      Маркировка
      микросхем
      A-DATA AD3U1333W8G9-2 DDR3-1333 2×8192 Elpida J4208BASE-DJ-F
      A-DATA AXDU1333GW8G9-2G DDR3-1333 2×8192 Elpida J4208BASE-DJ-F
      A-DATA EL64C1D1624Z1 DDR3-1600 8192 Elpida J4208BBBG-GN-F
      A-DATA SU3U1333W8G9 DDR3-1333 8192 Elpida J4208BASE-DJ-F
      AMD Memory (Patriot) AE38G1601U2 DDR3-1600 2×8192 Micron D9PBC (MT41J512M8RA-125:D)
      Corsair Dominator CMP32GX3M4X1600C10 DDR3-1600 4×8192 Elpida
      Corsair Dominator GT CMT32GX3M4X1866C9 DDR3-1866 4×8192 Micron
      Corsair Vengeance CMZ8GX3M1A1600C10 DDR3-1600 8192 Elpida
      Corsair Vengeance CMZ16GX3M2A1600C10 DDR3-1600 2×8192 Elpida
      Corsair Vengeance CMZ32GX3M4X1600C10 DDR3-1600 4×8192 Elpida
      Corsair Vengeance CMZ16GX3M2A1866C10 DDR3-1866 2×8192 Micron
      Corsair Vengeance CMZ32GX3M4X1866C10 DDR3-1866 4×8192 Micron
      Corsair XMS3 CMX8GX3M1A1333C9 DDR3-1333 8192 Elpida
      Corsair XMS3 CMX16GX3M2A1600C11 DDR3-1600 2×8192 Elpida
      Corsair XMS3 CMX32GX3M4A1600C11 DDR3-1600 4×8192 Elpida
      Crucial CT102464BA1339 DDR3-1333 8192 Micron D9PCH (MT41J512M8RA-15E:D)
      Crucial CT2KIT102464BA1339 DDR3-1333 2×8192 Micron D9PCH (MT41J512M8RA-15E:D)
      Crucial CT3KIT102464BA1339 DDR3-1333 3×8192 Micron D9PCH (MT41J512M8RA-15E:D)
      GeIL GB316GB1600C10DC DDR3-1600 2×8192 Elpida Elpida B-Die (remarked)
      G.Skill F3-1866C10D-16GAB DDR3-1866 2×8192 Micron D9NZZ (MT41K512M8RA-15E: D)
      G.Skill F3-2133C9Q-32GXH DDR3-2133 4×8192 Samsung
      Hynix HMT41GU6MFR8C-H9 DDR3-1333 8192 Hynix H5TQ4G83MFR-H9C
      Hynix HMT41GU6MFR8C-PB DDR3-1600 8192 Hynix H5TQ4G83MFR-PBC
      Kingston KVR1333D3N9/8G DDR3-1333 8192 Elpida J4208BASE-DJ-F
      J4208EASE-DJ-F
      Mushkin Model 992017 DDR3-1333 8192 Elpida J4208BASE-DJ-F
      Mushkin Model 997017 DDR3-1333 2×8192 Elpida J4208BASE-DJ-F
      Mushkin Model 999017 DDR3-1333 3×8192 Elpida J4208BASE-DJ-F
      Mushkin Model 994017 DDR3-1333 4×8192 Elpida J4208BASE-DJ-F
      NCP NCPH10AUDR-13M28 DDR3-1333 8192 Elpida Elpida B-Die (remarked)
      Patriot PGD332G1333ELQK DDR3-1333 8192 Micron D9PBC (MT41J512M8RA-125:D)
      Patriot PSD38G13332 DDR3-1333 4×8192 Micron D9PCH (MT41J512M8RA-15E:D)
      Samsung M378B1G73AH0-CH9 DDR3-1333 8192 Samsung SEC K4B4G0846A-HCH9
      Samsung M378B1G73BH0-CH9 DDR3-1333 8192 Samsung SEC K4B4G0846B-HCH9
      SanMax SMD-16G28NP-16K-D-BK DDR3-1600 2×8192 Elpida J4208BBBG-GN-F
      SanMax SMD-32G28NP-16K-Q-BK DDR3-1600 4×8192 Elpida J4208BBBG-GN-F
      SanMax SMD-16G28CP-16K-D-BK DDR3-1600 2×8192 Micron D9PBC (MT41J512M8RA-125:D)
      SanMax SMD-32G28CP-16K-Q-BK DDR3-1600 4×8192 Micron D9PBC (MT41J512M8RA-125:D)
      Silicon Power SP008GBLTU133N02 DDR3-1333 8192 Elpida Elpida B-Die (remarked)
      Transcend TS1GLK64V3H DDR3-1333 8192 Micron D9PBC (MT41J512M8RA-125:D)

      Заключение

      В целом модули памяти объемом 8 Гбайт во многом схожи со своими предшественниками на 4 Гбайта. Они по-прежнему требуют использования высоких таймингов для разгона, способны работать на пониженном напряжении (1.35 В), и масштабируются по частоте примерно до 1.65 В. Нагрев микросхем памяти плотностью 4 Гбит незначителен даже при разгоне, так что в радиаторах для них необходимости нет. Но если цены на бюджетные «планки» по 4 Гбайта давно стабилизировались и находятся на уровне 600-700 рублей за модуль, то разброс цен на память объемом 8 Гбайт все еще достаточно большой – от 1500 до 2800 рублей за модуль. Причем по минимальной цене можно купить только то, что совершенно не подходит для разгона.

      Модули памяти объемом 8 Гбайт остаются специфическим товаром и пока далеки от того, чтобы стать массовыми, но, несмотря на это, среди них уже есть «из чего выбирать и что разогнать». Если ваши потребности в объеме оперативной памяти все еще можно обеспечить при помощи четырех модулей объемом 4 Гбайта каждый, то на данный момент такой вариант будет выгоднее, чем два модуля по 8 Гбайт. В будущем, скорее всего, снижение цен на память с высокой плотностью продолжится, а разрыв цен между микросхемами Samsung и Elpida сократится. Но пока можно выбрать только два параметра из трех: объем, цена, разгонный потенциал.

      Теперь рассмотрим преимущества и недостатки отдельно по каждому типу протестированных модулей памяти.

      Silicon Power SP008GBLTU133N02 (S-POWER 40YT3EB) DDR3-1333 8192 Мбайта

      [+] Наличие упаковки.
      [+] Низкая цена, в районе 1500 рублей за модуль.
      [+] Пожизненная гарантия.
      [-] Запаянная упаковка не позволяет проверить память на совместимость и разгон, не повреждая товарный вид. Высока вероятность того, что память вскроют еще до продажи, чтобы проставить на модули наклейки с серийными номерами.
      [-] Плохой разгон. На частоте 1600 МГц память смогла работать только с CAS Latency 11.

      NCP NCPH10AUDR-13M28 (NCP NP15H51284GF-13) DDR3-1333 8192 Мбайта

      [+] Низкая цена, в районе 1500 рублей за модуль.
      [+] Пожизненная гарантия.
      [-] Плохой разгон. На частоте 1600 МГц память смогла работать только после повышения напряжения до 1.75 В.

      Patriot PSD38G13332 (Patriot PM512M8D3BU-15) DDR3-1333 8192 Мбайта

      [+] Невысокая цена, лишь немногим выше, чем у памяти на микросхемах Elpida ревизии B (Silicon Power, NCP и прочие).
      [+] Микросхемы Micron с плотностью 4 Гбит по разгону хоть и не могут сравниться с Samsung, но все же лучше всех разновидностей Elpida.

      GeIL GB316GB1600C10DC (GeIL GL1L512M88BA15BW) DDR3-1600 2×8192 Мбайта

      [+] Наличие профиля XMP.
      [+] Необычный внешний вид модулей и светодиодная подсветка.
      [+] Наличие упаковки.
      [+] Использование восьмислойной печатной платы Brainpower.
      [+] Пожизненная гарантия.
      [-] Плохой разгон. Может работать на частоте чуть выше 1600 МГц даже с пониженным до 1.35 В напряжением, но уровень Micron (и тем более Samsung) недостижим.

      [+] Наличие упаковки.
      [-] Высокая цена из-за использования дорогих микросхем Elpida ревизии A («A-Die»).
      [-] Плохой разгон. Неспособность работать даже на частоте 1600 МГц.

      [+] Лучший разгон среди всей протестированной памяти объемом 8 Гбайт, вполне сравнимый с уровнем разгона модулей 4 Гбайт. Может работать как на высоких частотах (до 2400 МГц), так и на низких таймингах (6-7-7-15 1T при номинальной частоте 1333 МГц).
      [-] Самый дорогой вариант памяти объемом 8 Гбайт с номиналом 1333 МГц. Но все равно дешевле оверклокерских комплектов, рассчитанных на работу с частотами от 1866 МГц и выше.

      С точки зрения разгонного потенциала все протестированные модули (да и вообще всю память с объемом, равным восьми гигабайтам) можно разделить на три типа, в зависимости от производителя микросхем:

    • Elpida. Не способны работать на частотах выше 1600 МГц, да и эту частоту берут далеко не все экземпляры. Модули памяти, основанные на четырехгигабитных микросхемах Elpida ревизии A (J4208BASE, J4208EASE и прочие) отличаются высокой ценой и вероятно скоро исчезнут из продажи. Микросхемы Elpida ревизии B (J4208BBBG и другие), наоборот, используются в самых дешевых (с номиналом 1333 и 1600 МГц) модулях объемом 8 гигабайт многими производителями (A-DATA, Corsair, Mushkin и другие), и со временем их ассортимент будет только больше. Выбор тех, кого не волнует разгон памяти, главное, чтобы она работала и стоила как можно меньше.
    • Micron. Память среднего уровня, способная достигать частот 1866-2000 (2133 МГц), в зависимости от удачности и типа использованных микросхем (D9PCH, D9PBC, D9NZZ). Помимо продукции Crucial их можно встретить и в основе других бюджетных модулей, например, Patriot Memory. Есть вероятность найти Micron в комплектах Corsair и G.Skill с номиналом 1866 МГц, поскольку Elpida для них уже не подходит по частотному потенциалу, а Samsung разумнее использовать только в самых дорогих и быстрых комплектах. По цене Micron немного дороже, чем Elpida ревизии B, но существенно дешевле, чем Samsung. Выбор экономных оверклокеров, которым не трудно переплатить сотню-две рублей за каждый модуль, чтобы получить хоть какой-то разгон, но не готовых платить двойную цену за Samsung или ждать пока цены на 8 Гбайт модули окончательно стабилизируются и сравняются (как это уже давно произошло с ценами на память объемом 4 Гбайта).
    • Samsung. На данный момент это лучшая для разгона память с плотностью 4 гигабита, но она же и самая дорогая. Микросхемы Samsung способны работать на частотах, значительно превышающих 2 ГГц. Встретить можно либо в виде оригинальных модулей Samsung, либо в топовых «оверклокерских» комплектах (например, производства G.Skill или GeIL), рассчитанных на номинальные частоты от 2133 МГц и выше. Эта память для тех, кто хочет получить не только большой объем, но и высокие частоты. Комплекты памяти объемом 64 Гбайта (8×8192 Мбайта), работающие на частотах 2133-2400 МГц, обойдутся вам в $800-950, не считая пересылки в Россию. Отдельные модули Samsung Original уже можно купить в России, и они немного дешевле «оверклокерских» комплектов, но даже их не каждый энтузиаст может себе позволить.
    • Неясными остаются только возможности 4 Гбит микросхем Nanya (Elixir) и Hynix . Найти в продаже модули памяти на их основе пока не удалось. Но если учесть, что после увеличения плотности микросхем от 2 до 4 Гбит расстановка сил между Elpida, Micron и Samsung в целом осталась прежней, то можно предположить, что от Nanya (Elixir) ничего особенного ждать не стоит, а Hynix снова может составить конкуренцию Samsung. Но это уже тема для отдельного исследования.

      Подпишитесь на наш канал в Яндекс.Дзен или telegram-канал @overclockers_news — это удобные способы следить за новыми материалами на сайте. С картинками, расширенными описаниями и без рекламы.

      Что означают эти непонятные цифры на оперативной памяти для ПК? Ведь тайминги напрямую влияют на ее быстродействие, но их величина — это вовсе не объем и не скорость. Рассказываем понятным языком и объясняем, какие параметры лучше.

      При выборе оперативной памяти для ПК многие пользователи сталкиваются с вопросом изучения характеристик чипов, в том числе рабочих частот и таймингов. Но если с первыми все понятно — чем они выше, тем быстрее память, то со вторыми не все так просто. Мы расскажем, для чего нужен этот параметр и как выбрать планку с оптимальными значениями таймингов.

      Что влияет на скоростные параметры ОЗУ

      От скоростных показателей оперативной памяти зависит как быстро будет осуществляться обмен данными между процессором и жестким диском и системой. Чем выше частота работы чипов, тем больше операций чтения/записи она может выполнить в единицу времени. Конечно, от объема оперативной памяти также зависит общее быстродействие ПК, но лишь в определенных программах.

      Это может быть интересно:

      Характеристики памяти

      Возьмем конкретный пример: планка оперативной памяти DDR3 1600 RAM имеет в обозначениях еще и такие характеристики, как PC3 12800, а у модуля DDR4 2400 RAM указано PC4 19200. Что это означает? Первая цифра указывает на частоту работы памяти в МГц, то вторая связана с битами:

      1 байт = 8 бит

      Из этого можно вычислить, что DDR3 с частотой 1600 МГц сможет обработать 12800 МБ/сек. Аналогично этому DDR4 2400 сможет попустить через себя данные со скоростью 19200 МБ/сек. Таким образом, со скоростью обработки данных разобрались.

      Теперь плавно переходим к таймингам. Эти цифры также указывают на наклейках на оперативной памяти в виде счетверённых через дефис цифр, например, 7-7-7-24, 8-8-8-24 и т.д. Эти цифры обозначают, какой промежуток времени (задержка) необходим модулю RAM для доступа к битам данных при выборке из таблицы массивов памяти.

      Эта задержка характеризует, какое количество тактовых импульсов необходимо для считывания данных из ячеек памяти для 4-х таймингов. Самый важный из четырех цифр — первый, и на этикетке может быть написан только он.

      Поэтому, в этих характеристиках действует обратный принцип: чем меньше числа, тем выше скорость. А меньшая задержка обеспечит быстрее считать или записать данные в ячейку памяти и затем достигнут процессора для обработки.

      Тайминги замеряют период ожидания (CL, CAS Latency, где CAS — Acess Strobe) чипа памяти, пока он обрабатывает текущий процесс. Т.е. это время между получением команды на чтение и ее выполнением.

      Со следующими двумя цифрами все несколько сложнее. Вторая цифра в строке таймингов RAS-CAS, ) является ни чем иным, как отрезок времени между получением команды «Active» и выполнением поступающей после нее команды на чтение или запись. Здесь также — чем меньше, тем лучше.

      Третья цифра, это RAS Precharge — время, за которое проходит между завершением обработки одной строки и переходом к другой.

      И последняя цифра демонстрирует параметр памяти Row Active. Он определяет задержку, в течение которой активна одна строка в ячейке.

      Какие тайминги лучше выбирать

      Допустим вы покупаете для своего ноутбука комплект оперативной памяти из двух планок DDR. В этом случае тайминги будут одинаковые у обеих модулей, что определяет их стабильную работу. Что касается величины, то определяющей является первая цифра, обозначаемая, как CL-9. А значения 9-9-9-24 можно охарактеризовать, как средние по быстродействию.

      Вы также можете подобрать себе оперативную память в качестве апгрейда. Здесь также нужно придерживаться правила равных таймингов, и не допускать, чтобы какой-то из них, например, опережал почти на треть цикла.

      Если же вы намерены установить на ПК самую быструю память, что следует учесть, что, например, тайминги 4-4-4-8, 5-5-5-15 и 7-7-7-21 могут обеспечить очень быстрый доступ к данным, но процессор и материнская плата не смогут этим воспользоваться. При этом важно, чтобы в материнской была возможность вручную установить тайминги для ОЗУ.

      Как узнать тайминги оперативной памяти

      Для этих целей не обязательно вскрывать корпус и вытаскивать из слотов планки оперативной памяти. Специальная бесплатная утилита CPU-Z позволит быстро узнать нужные цифры таймингов. Скачать ее можно с сайта программы.

      Как посчитать тайминг самому

      Для вычисления таймингов самостоятельно можно использовать довольно простую формулу:

      Время задержки (сек) = 1 / Частоту передачи (Гц)

      Таким образом, из скриншота с CPU-Z можно высчитать, что модуль DDR 3, работающий с частотой 400 МГц (половина декларируемого производителем значения, т.е. 800 МГц) будет выдавать примерно:

      1 / 400 000 000 = 2,5 нсек (наносекунд)

      периода полного цикла (время такта). А теперь считаем задержку для обоих вариантов, представленных в рисунках. При таймингах CL-11 модуль будет выдавать задержки периодом 2,5 х 11 = 27,5 нсек. В CPU-Z это значение показано как 28. Как видно из формулы, чем ниже каждый из указываемых параметров, тем быстрее будет ваша оперативная память работать.

      Как вручную задать тайминги в BIOS

      Такая возможность есть не в любой материнской плате — лишь в оверклокерских модификациях. Вы можете попробовать выставить тайминги вручную из предлагаемых системой значений, после чего нужно внимательно следить за стабильностью работы ПК под нагрузкой. Если в БИОС специальных настроек не предусмотрено, то стоит смириться с теми, которые установлены по умолчанию.

      Читайте также:

      Фото: компании-производители

      История оперативной памяти, или ОЗУ, началась в далёком 1834 году, когда Чарльз Беббидж разработал «аналитическую машину» — по сути, прообраз компьютера. Часть этой машины, которая отвечала за хранение промежуточных данных, он назвал «складом». Запоминание информации там было организовано ещё чисто механическим способом, посредством валов и шестерней.

      В первых поколениях ЭВМ в качестве ОЗУ использовались электронно-лучевые трубки, магнитные барабаны, позже появились магнитные сердечники, и уже после них, в третьем поколении ЭВМ появилась память на микросхемах.

      Сейчас ОЗУ выполняется по технологии DRAM в форм-факторах DIMM и SO-DIMM, это динамическая память, организованная в виде интегральных схем полупроводников. Она энергозависима, то есть данные исчезают при отсутствии питания.

      Выбор оперативной памяти не является сложной задачей на сегодняшний день, главное здесь разобраться в типах памяти, её назначении и основных характеристиках.

      Типы памяти

      SO-DIMM

      Память форм-фактора SO-DIMM предназначена для использования в ноутбуках, компактных ITX-системах, моноблоках — словом там, где важен минимальный физический размер модулей памяти. Отличается от форм-фактора DIMM уменьшенной примерно в 2 раза длиной модуля, и меньшим количеством контактов на плате (204 и 360 контактов у SO-DIMM DDR3 и DDR4 против 240 и 288 на платах тех же типов DIMM-памяти).

      По остальным характеристикам — частоте, таймингам, объёму, модули SO-DIMM могут быть любыми, и ничем принципиальным от DIMM не отличаются.

      DIMM

      DIMM — оперативная память для полноразмерных компьютеров.

      Тип памяти, который вы выберете, в первую очередь должен быть совместим с разъёмом на материнской плате. ОЗУ для компьютера делится на 4 типа – DDR, DDR2, DDR3 и DDR4.

      Память типа DDR появилась в 2001 году, и имела 184 контакта. Напряжение питания составляло от 2.2 до 2.4 В. Частота работы – 400МГц. До сих пор встречается в продаже, правда, выбор невелик. На сегодняшний день формат устарел, — подойдёт, только если вы не хотите обновлять систему полностью, а в старой материнской плате разъёмы только под DDR.

      Стандарт DDR2 вышел уже в 2003-ем, получил 240 контактов, которые увеличили число потоков, прилично ускорив шину передачи данных процессору. Частота работы DDR2 могла составлять до 800 МГц (в отдельных случаях – до 1066 МГц), а напряжение питания от 1.8 до 2.1 В – чуть меньше, чем у DDR. Следовательно, понизились энергопотребление и тепловыделение памяти.

      Отличия DDR2 от DDR:

      · 240 контактов против 120 · Новый слот, несовместимый с DDR · Меньшее энергопотребление · Улучшенная конструкция, лучшее охлаждение · Выше максимальная рабочая частота Также, как и DDR, устаревший тип памяти — сейчас подойдёт разве что под старые материнские платы, в остальных случаях покупать нет смысла, так как новые DDR3 и DDR4 быстрее.

      В 2007 году ОЗУ обновились типом DDR3, который до сих пор массово распространён. Остались всё те же 240 контактов, но слот подключения для DDR3 стал другим – совместимости с DDR2 нет. Частота работы модулей в среднем от 1333 до 1866 МГц. Встречаются также модули с частотой вплоть до 2800 МГц.

      DDR3 отличается от DDR2:

      · Слоты DDR2 и DDR3 несовместимы.

      · Тактовая частота работы DDR3 выше в 2 раза – 1600 МГц против 800 МГц у DDR2.

      · Отличается сниженным напряжением питания – порядка 1.5В, и меньшим энергопотреблением (в версии DDR3L это значение в среднем ещё ниже, около 1.35 В). · Задержки (тайминги) DDR3 больше, чем у DDR2, но рабочая частота выше. В целом скорость работы DDR3 на 20-30% выше.

      DDR3 — на сегодня хороший выбор. Во многих материнских платах в продаже разъёмы под память именно DDR3, и в связи с массовой популярностью этого типа, вряд ли он скоро исчезнет. Также он немного дешевле DDR4.

      DDR4 – новый тип ОЗУ, разработанный только в 2012 году. Является эволюционным развитием предыдущих типов. Пропускная способность памяти снова повысилась, теперь достигая 25,6 Гб/с. Частота работы также поднялась – в среднем от 2133 МГц до 3600 МГц. Если же сравнивать новый тип с DDR3, который продержался на рынке целых 8 лет и получил массовое распространение, то прирост производительности незначителен, к тому же далеко не все материнские платы и процессоры поддерживают новый тип.

      · Несовместимость с предыдущими типами · Пониженно напряжение питания – от 1.2 до 1.05 В, энергопотребление тоже снизилось · Рабочая частота памяти до 3200 МГц (может достигать 4166 МГц в некоторых планках), при этом, конечно, выросшие пропорционально тайминги · Может незначительно превосходить по скорости работы DDR3

      Если у вас уже стоят планки DDR3, то торопиться менять их на DDR4 нет никакого смысла. Когда этот формат распространится массово, и все материнские платы уже будут поддерживать DDR4, переход на новый тип произойдёт сам собой с обновлением всей системы. Таким образом, можно подытожить, что DDR4 – скорее маркетинг, чем реально новый тип ОЗУ.

      Какую частоту памяти выбрать?

      Выбор частоты нужно начинать с проверки максимально поддерживаемых частот вашим процессором и материнской платой. Частоту выше поддерживаемой процессором имеет смысл брать только при разгоне процессора.

      На сегодняшний день не стоит выбирать память с частотой ниже 1600 МГц. Вариант 1333 МГц допустим в случае DDR3, если это не завалявшиеся у продавца древние модули, которые явно будут медленнее новых.

      Оптимальный вариант на сегодня — это память с интервалом частот от 1600 до 2400 МГц. Частота выше почти не имеет преимущества, но стоит гораздо дороже, и как правило является разогнанными модулями с поднятыми таймингами. Для примера, разница между модулями в 1600 и 2133 Мгц в ряде рабочих программ будет не более 5-8 %, в играх разница может быть ещё меньше. Частоты в 2133-2400 Мгц стоит брать, если вы занимаетесь кодированием видео/аудио, рендерингом.

      Разница же между частотами в 2400 и 3600 Мгц обойдётся вам довольно дорого, при этом не прибавив ощутимо скорости.

      Какой объём оперативной памяти брать?

      Объём, который вам понадобится, зависит от типа работы, производимой на компьютере, от установленной операционной системы, от используемых программ. Также не стоит упускать из виду максимально поддерживаемый объём памяти вашей материнской платой.

      Объём 2 ГБ — на сегодняшний день, может хватить разве что только для просмотра интернета. Больше половину будет съедать операционная система, оставшегося хватит на неторопливую работу нетребовательных программ.

      Объём 4 ГБ – подойдёт для компьютера средней руки, для домашнего пк-медиацентра. Хватит, чтобы смотреть фильмы, и даже поиграть в нетребовательные игры. Современные – увы, с потянет с трудом. (Станет лучшим выбором, если у вас 32-разрядная операционная система Windows, которая видит не больше 3 ГБ оперативной памяти)

      Объём 8 ГБ (или комплект 2х4ГБ) – рекомендуемый объём на сегодня для полноценного ПК. Этого хватит для почти любых игр, для работы с любым требовательным к ресурсам софтом. Лучший выбор для универсального компьютера.

      Объём 16 ГБ (или наборы 2х8ГБ, 4х4ГБ)- будет оправданным, если вы работаете с графикой, тяжёлыми средами программирования, или постоянно рендерите видео. Также отлично подойдёт для ведения онлайн-стримов – здесь с 8 ГБ могут быть подвисания, особенно при высоком качестве видео-трансляции. Некоторые игры в высоких разрешениях и с HD-текстурами могут лучше себя вести с 16 ГБ оперативной памяти на борту.

      Объём 32 ГБ (набор 2х16ГБ, или 4х8ГБ)– пока очень спорный выбор, пригодится для каких-то совсем экстремальных рабочих задач. Лучше будет потратить деньги на другие комплектующие компьютера, это сильнее отразится на его быстродействии.

      Режимы работы: лучше 1 планка памяти или 2?

      ОЗУ может работать в одно-канальном, двух-, трёх- и четырёх-канальном режимах. Однозначно, если на вашей материнской плате есть достаточное количество слотов, то лучше взять вместо одной планки памяти несколько одинаковых меньшего объёма. Скорость доступа к ним вырастет от 2 до 4 раз.

      Чтобы память работала в двухканальном режиме, нужно устанавливать планки в слоты одного цвета на материнской плате. Как правило, цвет повторяется через разъём. Важно при этом, чтобы частота памяти в двух планках была одинаковой.

      Single chanell Mode – одноканальный режим работы. Включается, когда установлена одна планка памяти, или разные модули, работающие на разной частоте. В итоге память работает на частоте самой медленной планки.

      Dual Mode – двухканальный режим. Работает только с модулями памяти одинаковой частоты, увеличивает скорость работы в 2 раза. Производители выпускают специально для этого комплекты модулей памяти, в которых может быть 2 или 4 одинаковых планки.

      Triple Mode – работает по тому же принципу, что и двух-канальный. На практике не всегда быстрее.

      Quad Mode — четырёх-канальный режим, который работает по принципу двухканального, соответственно увеличивая скорость работы в 4 раза. Используется, там где нужна исключительно высокая скорость — например, в серверах.

      Flex Mode – более гибкий вариант двухканального режима работы, когда планки разного объёма, а одинаковая только частота. При этом в двухканальном режиме будут использоваться одинаковые объёмы модулей, а оставшийся объём будет функционировать в одноканальном.

      Нужен ли памяти радиатор?

      Сейчас уже давно не те времена, когда при напряжении в 2 В достигалась частота работы в 1600 МГц, и в результате выделялось много тепла, которое надо было как-то отводить. Тогда радиатор мог быть критерием выживаемости разогнанного модуля.

      В настоящее время же энергопотребление памяти сильно снизилось, и радиатор на модуле может быть оправдан с технической точки зрения, только если вы увлекаетесь оверклокингом, и модуль будет работать у вас на запредельных для него частотах. Во всех остальных случаях радиаторы можно оправдать, разве что, красивым дизайном.

      В случае, если радиатор массивный, и заметно увеличивает высоту планки памяти – это уже существенный минус, поскольку он может помешать вам поставить в систему процессорный суперкулер. Существуют, кстати, специальные низкопрофильные модули памяти, предназначенные для установки в компактные корпуса. Они несколько дороже модулей обычного размера.

      Что такое тайминги?

      Тайминги, или латентность (latency) – одна из самых важных характеристик оперативной памяти, определяющих её быстродействие. Обрисуем общий смысл этого параметра.

      Упрощённо оперативную память можно представить, как двумерную таблицу, в которой каждая ячейка несёт информацию. Доступ к ячейкам происходит по указанию номера столбца и строки, и указание это происходит при помощи стробирующего импульса доступа к строке RAS (Row Access Strobe) и стробирующего импульса доступа к столбцу CAS (Acess Strobe) путём изменения напряжения. Таким образом, за каждый такт работы происходят обращения RAS и CAS, и между этими обращениями и командами записи/чтения существуют определённые задержки, которые и называются таймингами.

      В описании модуля оперативной памяти можно увидеть пять таймингов, которые для удобства записываются последовательностью цифр через дефис, например 8-9-9-20-27.

      · tRCD (time of RAS to CAS Delay) — тайминг, который определяет задержку от импульса RAS до CAS

      · CL (timе of CAS Latency) — тайминг, определяющий задержку между командой о записи/чтении и импульсом CAS

      · tRP (timе of Row Precharge) — тайминг, определяющий задержку при переходах от одной строки к следующей

      · tRAS (time of Active to Precharge Delay) — тайминг, который определяет задержку между активацией строки и окончанием работы с ней; считается основным значением

      · Command rate – определяет задержку между командой выбора отдельного чипа на модуле до команды активации строки; этот тайминг указывают не всегда.

      Если говорить ещё проще, то о таймингах важно знать только одно – чем их значения меньше, тем лучше. При этом планки могут иметь одинаковую частоту работы, но разные тайминги, и модуль с меньшими значениями всегда будет быстрее. Так что стоит выбирать минимальные тайминги, для DDR4 ориентиром средних значений будут тайминги 15-15-15-36, для DDR3 — 10-10-10-30. Также стоит помнить, что тайминги связаны с частотой памяти, так что при разгоне скорее всего придётся поднять и тайминги, и наоборот — можно вручную опустить частоту, снизив при этом тайминги. Выгоднее всего обращать внимание на совокупность этих параметров, выбирая скорее баланс, и не гнаться за крайними значениями параметров.

      Как определиться с бюджетом?

      Располагая большей суммой, вы сможете позволить себе больший объём оперативной памяти. Основное отличие дешёвых и дорогих модулей будет в таймингах, частоте работы, и в бренде – известные, разрекламированные могут стоить немного дороже noname модулей непонятного производителя.

      Кроме того, дополнительных денег стоит радиатор, установленный на модули. Далеко не всем планкам он нужен, но производители сейчас на них не скупятся.

      Цена будет также зависеть от таймингов, чем они ниже- тем выше скорость, и соответственно, цена.

      Итак, имея до 2000 рублей, вы сможете приобрести модуль памяти объёмом 4 ГБ, или 2 модуля по 2 ГБ, что предпочтительнее. Выбирайте в зависимости от того, что позволяет конфигурация вашего пк. Модули типа DDR3 обойдутся почти вдвое дешевле чем DDR4. При таком бюджете разумнее брать именно DDR3.

      В группу до 4000 рублей входят модули объёмом в 8 ГБ, а также наборы 2х4 ГБ. Это оптимальный выбор для любых задач, кроме профессиональной работы с видео, и в любых других тяжёлых средах.

      В сумму до 8000 рублей обойдётся объём памяти в 16 ГБ. Рекомендуется для профессиональных целей, или для заядлых геймеров — хватит даже про запас, в ожидании новых требовательных игр.

      Если не проблема потратить до 13000 рублей, то самым лучшим выбором будет вложить их в набор из 4 планок по 4 ГБ. За эти деньги можно выбрать даже радиаторы покрасивее, возможно для последующего разгона.

      Больше 16 ГБ без цели работы в профессиональных тяжёлых средах (да и то не во всех) брать не советую, но если очень хочется, то за сумму от 13000 рублей вы сможете залезть на Олимп, приобретя комплект на 32 ГБ или даже 64 ГБ. Правда, смысла для рядового пользователя или геймера в этом будет не много – лучше потратить средства, скажем, на флагманскую видеокарту.

      Сегодня я попытаюсь разобраться, насколько важна производительность оперативной памяти для игрового ПК. Конечно, было бы прекрасно провести тестирование в 4х разрешениях в 20 играх и при 10 различных режимах памяти. Но подобное тестирование заняло бы у меня как минимум несколько месяцев, в течение которых все свободное время я посвящал бы тестам, и в итоге это тестирование никогда бы не было окончено. Поэтому осталось 5 режимов работы оперативной памяти, 7 игр и разрешение 1080p. Такое разрешение было выбрано, чтобы показать зависимость в условиях приближенных к реальным (хотя 1080p для GTX 1080 это даже маловато). Но не беспокойтесь, отдельные тесты в 720p тоже будут. Да еще какие!

      Перед проведением подробных тестов с замерами были проведены тесты записью видео и смонтированы в 2 ролика. В первом сравнивается производительность в следующих режимах 2133, 2666 XMP, 2666 optimized, 3200 optimized в разрешении 1080p в 9 играх.

      (function(w, d, n, s, t) < w[n] = w[n] || []; w[n].push(function() < Ya.Context.AdvManager.render(< block );

      Во втором сравниваются 2666 optimized и 3200 default в 720p

      Именно в комментах к видео появилась идея с замерами 1% и 0.1%

      В первую очередь я отказался от частоты памяти 2133. Сегодня эта частота представляет лишь теоретический интерес. Все процессоры и матплаты поддерживают из коробки бОльшую частоту. А вот режимов с частотой 2666 будет 2 – стандартный XMP и с выжатыми таймингами. Частота 2666 интересна тем, что это максимальная частота для чипсетов, не поддерживающих разгон (на платформе Intel), и будет интересно посмотреть, на что способна память в таком режиме. Итак, память тестировалась в следующих режимах:

      2666 opt (Optimized). 12-16-16-28-1T, TRFC=280, TREFI=65535, остальные тайминги выставлены вручную (но не «добиты» до самых минимальных значений из-за недостаточности времени на тестирование стабильности).

      3200 default. 15-19-19-34, tCWL=15, все остальные тайминги Авто.

      3200 opt. 15-19-19-34-1T, TRFC=330, TREFI=65535, остальные тайминги выставлены вручную.

      3400 opt. 16-20-20-34-1T, TRFC=350, TREFI=65535, остальные тайминги выставлены вручную.

      Таблица с таймингами

      Процессор во всех тестах Core i7 8700K на частоте 4,8 ГГц. Режим максимальной производительности включен как в Windows, так и в биос материнской платы.

      Результаты в AIDA64 Memory Benchmark

      2666 МГц очень сильно улучшает показатели после настройки таймингов и приближается к лидерам по времени задержки. Посмотрим, к чему это приведет в играх.

      Тестовый стенд

      ЦП: Core i7 8700K @ 4.8 GHz, северный мост @ 4.4 GHz

      МП: Asus Z370-A, версия биос 0616

      Кулер: Phanteks PH-TC14PE + Noctua NF-A15

      ОЗУ: 2*8GB Geil Super Luce 2666

      ВК: Zotac Geforce GTX 1080 AMP + Accelero Xtreme III @ 2000/10800

      БП: Corsair RM650

      Корпус: Fractal Design Define R5 + 3x bequiet Silent Wings 2 140 mm

      SSD: 2x Crusial M4 128GB, Crusial MX300 525GB, Kingfast 250GB

      ОС: Windows 10 x64 LTSB

      Версия драйвера ВК: 398.11

      Для теста преимущественно отобраны игры, в которые я играю и знаю, в каких локациях производительность наименее зависит от видеокарты. Замеры среднего фпс и 1% и 0.1% фпс производились Fraps. К сожалению, пришлось отказаться от тестирования в Rise of Tomb Raider, т.к. Fraps в данной игре не работал. Также если не использовался бенчмарк, то не делалось никаких «прогревочных» пробежек по траектории, чтобы исключить лаги. Именно эти лаги мы сейчас и ищем.

      Список игр

      Assassin’s Creed Origins. Разрешение 1080p, пресет Ultra High. Используется встроенный бенчмарк, т.к. в данную игру я не играл. Тест производительности в Fraps запускался и останавливался вручную.

      Fallout 4. Разрешение 1080p, пресет Ultra. Казалось бы, старая игра на древнейшем движке, но в данной игре есть место, где фпс зависит только от производительности оперативной памяти – верхушка завода Корвега. Фпс замерялся в течение 20 секунд при неподвижности персонажа. Тут я приведу только средний фпс. Также проведено тестирование при входе в Diamond City (13 cекунд).

      Far Cry 5. Разрешение 1080p, пресет Ultra. Используется встроенный бенчмарк. Тест производительности в Fraps запускался и останавливался вручную.

      Grand Theft Auto 5. Используется встроенный бенчмарк. Изначально я хотел использовать поездку по городу, но так и не смог научиться быстро ездить без аварий (в отличие от Watch Dogs 2). Настройки смотрите на скриншотах. Игра сама предложила подобные настройки при старте. Тест производительности в Fraps запускался вручную на 116 секунд в момент запуска последнего теста (и охватывал весь последний тест).

      Kingdom Come Deliverance. Разрешение 1080p, пресет Very High. Поездка на быстрой лошади от мельницы до Ратае и через центральную улицу Ратае в течение 50 секунд. В отличие от видеосравнения тестовый отрезок заканчивается почти сразу после выезда за границу города.

      Witcher 3. Разрешение 1080p, пресет Ultra. Поездка на лошади через Новиград в течение 50 секунд. В отличие от видеосравнения тестовый отрезок заканчивается почти сразу после выезда за границу города.

      Watch Dogs 2. Разрешение 1080p, пресет Ультра. Поездка по центральной улице на быстром авто (одинаковом для каждого прогона) в течение 45 секунд. В отличие от видеосравнения обратно я уже не возвращаюсь, т.е. еду по дороге в одну сторону.

      Результаты

      Assassin’s Creed Origins 1080p

      Различия между режимами очень небольшие. 2666 opt быстрее 3200 def.

      Fallout 4 1080p

      Рассмотрим пока спуск в Diamond City

      Разница между лучшим и худшим результатом (avg и 1%) около 15%. 2666 опять опережает 3200 def.

      Far Cry 5 1080p

      Очень маленькая разница по среднему фпс, но вполне ощутимая по 1 и 0.1%. 2666 без оптимизаций отстает от остальных режимов, которые в свою очередь почти не отличаются между собой

      Grand Theft Auto 5 1080p

      С результатами GTA5 все не так однозначно. Средний фпс от прогона к прогону почти не отличался, а вот 1% и особенно 0.1% плавали в весьма широких пределах.

      Например, все тесты при 3200 opt сразу показали высокий результат, а все 3 прогона при 3400 — низкий. И что тут прикажете делать? Тестирование при 3400 я провел заново, и именно эти результаты вы видите на графике. Результаты первых 3 прогонов можете скачать в архиве. Порой возникают фризы при переходе камеры от самолета к джипу, но зачастую просто отличается количество машин и взрывов. В итоге я решил использовать максимальные результаты. И получилось так, что тестирование в 3400 пришлось проводить дважды, а в 2666 opt долго добивать третий результат.

      Kingdom Come Deliverance 1080p

      В последней версии 1.5 (update: уже доступна 1.6) игра избавилась от фризов и просадок фпс при беге по городу на своих двоих. Но если скакать во весь опор на лошади, то фпс все еще провисает, хотя и меньше, чем на релизной версии. 2666 opt оказался гораздо ближе к оптимизированным 3200 и 3400, чем к 3200 без оптимизаций.

      Watch Dogs 2 1080p

      Стоп! Самая требовательная к скорости оперативной памяти игра показала минимальную разницу? Не может того быть! Может, если учесть настройки. В 1080p на Ultra настройках GTX 1080 почти постоянно работает на пределе, потому и такая небольшая разница.

      720p

      Тестирование в 720p я провел не во всех играх. Тестировать в 720p Fallout 4 и GTA 5 нет никакого смысла – в них и при 1080p видеокарта не загружена (это видно на видео). В Kingdom Come Deliverance видеокарта бОльшую часть времени загружена на максимум, но в моменты просадок фпс загрузка GPU падает. Итак, в 720p я протестирую Assassin’s Creed Origins, Witcher 3 и Far Cry 5. Watch Dogs 2 и завод Корвега из Fallout 4 оставлю напоследок.

      Assassin’s Creed Origins 720p

      Разница между режимами в 720p немного больше, чем в 1080p, но вновь ничего выдающегося.

      Witcher 3 720p

      Средний фпс растет, но 1% и 0.1% падает… Тестировать в 3200 opt я не стал – всего 2,3% разницы между 3400 и 2666 делает этот тест бессмыссленным.

      Far Cry 5 720p

      Всего 2 режима, т.к. их результаты показывают бессмысленность остального тестирования. Всего 3-4% разницы между 2666 и 3400 (+27% или +733 МГц частоты!) в 720p.

      Watch Dogs 2 720p custom settings

      А теперь немного хардкора. Снижаем разрешение до 720p, включаем пресет Ультра, а потом снижаем тени на Высоко и выключаем «Туман Сан-Франциско» и «Тень объектов в свете фар».

      Помимо основных 5 режимов тестируем в следующих:

      2666 XMP + TRFC, TREFI. Режим 2666 XMP кроме TRFC=280, TREFI=65535

      2666 12-16-28-1T. Основные тайминги настроены вручную, все остальные на Авто

      2666 opt no TRFC, TREFI. 2666 opt кроме TRFC и TREFI на Авто

      2666 opt, subtim=auto. Основные тайминги, TRFC, TREFI настроены вручную, все остальные тайминги на Авто

      2666 opt, TREFI=auto. 2666 opt кроме TREFI на Авто.

      2666 opt, TRFC=auto. 2666 opt кроме TRFC на Авто.

      2666 opt cl=14. 2666 opt кроме cl=14

      2666 opt CR=2T. 2666 opt кроме Command Rate=2T

      3267 opt. Тайминги аналогичны 3200 opt. Можитель процессора 47, шина 102.1

      Каждый тест выполнялся 2 раза.

      Наконец-то реальная разница между различными режимами! 2666 opt на 13-14% быстрее 2666 XMP, а 3400 opt в свою очередь на 10-11% быстрее 2666 opt, а разница между 2666 XMP и 3400 opt составляет 25%. Но есть одно но. Подобная разница получилась в одной игре, в разрешении 720p, с немного сниженными настройками, при использовании Core i7 8700K на частоте 4,8 ГГц и Geforce GTX 1080. Хочется тут вставить видео со святым отцом из «Очень страшного кино»

      Еще из интересного можно отметить, что 2666 со всеми настроенными таймингами, кроме TRFC+TREFI, равен режиму 2666 XMP с настроенными TRFC+TREFI.

      Повышение TRFC c 280 до дефолтных 467 (для частоты 2666) на производительность по сути не влияет.

      Настройка только TRFC+TREFI после активации XMP профиля уже ощутимо улучшает производительность.

      Ну и напоследок тест на заводе Корвега в Fallout 4. Особенность данной точки, что фпс тут не зависит ни от видеокарты, ни от процессора, а только от производительности оперативной памяти. Тест проводился всего 1 раз ввиду высокой повторяемости результатов. Приведен средний фпс.

      Здесь разница меньше, чем в WD2 – всего 13,5% между лучшим и худшим результатом. Сами результаты позволяют оценить влияние каждого параметра на производительность.

      Заключение

      Через пару дней после начала подробных тестов я подумал, что занимаюсь чем-то бесполезным, и все основные ответы уже есть в записанных ранее видео. В общем-то, так и вышло. 2666 МГц с оптимизированными таймингами в подавляющем большинстве случаев не сильно уступает 3200 и 3400 (также с настроенными таймингами) и всегда превосходит 3200 с дефолтными таймингами. Основную роль в этом играет тайминг TREFI, но и остальные далеко небесполезны.

      Ощутимую разницу удалось получить лишь в игре Watch Dogs 2 в разрешении 720p с немного сниженными настройками графики. Можно, конечно, было бы сказать, что со временем таких игр станет больше, но с момента выхода WD2 прошло более полутора лет, и новые игры показывают куда меньшую зависимость от производительности памяти.

      При этом я ни в коем случае не утверждаю, что 2666 хватит всем. Для получения хороших результатов при данной частоте нужно потратить немало времени на настройку таймингов, и далеко не все на это пойдут. При этом память на 3200 и 3400 МГц с настроенными таймингами все равно быстрее 2666 также с оптимизацией. Поэтому, сначала находим предел по частоте памяти, а только потом настраиваем тайминги. Но, если ваша материнская плата не поддерживает разгон памяти, то обязательно настраиваем тайминги на частоте 2666 — это серьезно повышает производительность.

      Ссылка на архив со всеми результатами и скриншотами таймингов и результатов в AIDA64.

      Разбираемся в том, что такое тайминги оперативной памяти и какое значение они имеют.

      Тайминги оперативной памяти: разбираемся, какие значения лучше

      От скорости работы оперативной памяти во многом зависит быстродействие всего компьютера, поэтому и ее выбор не менее важен, чем покупка «правильного» процессора или материнской платы. Ну а среди важнейших параметров любой оперативки выделяются частота и тайминги. Но если с первой все понятно, то тайминги для многих остаются темным лесом. Сегодня мы расскажем, что скрывается за этим непонятным набором циферок, и какое значение он имеет.

      Содержание

      Что такое тайминги

      Если говорить очень простым языком, оперативная память представляет собой массивы с двухмерной таблицей, в ячейках которой хранится нужная информация. А массивы с ячейками одинакового размера, в свою очередь, объединяются в так называемые банки.

      Для выполнения любой операции с данными из этой таблицы контроллеру и чипу памяти требуется определенное число тактовых циклов шины памяти. Ну а тайминг — это и есть число таких циклов, или число циклов на которое запоздает выполнение определенной операции с памятью. Отсюда и само название — тайминг или задержка.

      Как выбрать оперативную память: разбираемся в нюансах

      Собственно, именно поэтому две оперативной памяти с одинаковой частотой, но разными таймингами будут работать по-разному, причем наиболее быстрой окажется память именно с меньшей задержкой.

      Подпишитесь на наши каналы, что.

      Какие тайминги бывают

      Каждую операцию с оперативной памятью можно разбить на несколько этапов. Поэтому в характеристиках любой планки ОЗУ указывается несколько таймингов — задержек, которые возникают на определенном этапе работы с памятью. Числа таймингов указывают на выполнение следующих операций:

      CL: CAS Latency – число тактов, которое проходит с отправки запроса в память до начала ответа на него.
      tRCD: RAS to CAS Delay – количество тактов, которое требуется контроллеру для активации нужной строки банки.
      tRP: RAS Precharge – число тактов для заряда и закрытия одной строки, после чего становится возможна активация следующей строки.
      tRAS: Row Active Time — минимальное число тактов, в течение которого строка будет активна. Она не может быть закрыта раньше этого времени.

      Все эти тайминги указываются в параметрах оперативной памяти именно в том порядке, который мы привели. Возьмем, к примеру, оперативную память Patriot Memory VIPER STEEL DDR4-3733 CL-17 21-21-41. Мы видим, что она относится к типу DDR4 и работает на тактовой частоте 3733 МГц. Ей требуется 17 тактов для начала ответа на поступивший запрос (CL). Активация нужной строки занимает 21 такт (tRCD) и столько же циклов уходит на ее закрытие и активацию следующей строки (tRP). Причем сама строка может быть закрыта не раньше чем через 41 такт (tRAS).

      Как вы видите, каждая цифра в названии оперативной памяти имеет свое значение. И, разобравшись в этом, вы легко сможете подобрать самую подходящую для вас оперативку.

      5 оптимальных вариантов оперативной памяти для разгона

      Как узнать тайминги ОЗУ

      Значения таймингов оперативной памяти можно посмотреть на ее странице в любом мало-мальски уважающем себя магазине или на сайте производителя. Если же вы хотите увидеть характеристики уже установленной у вас памяти, вы можете воспользоваться CPU-Z или аналогичными утилитами.

      Как правильно выбрать самую быструю оперативную память

      Если кратко, то частота оперативной памяти важнее таймингов, но при одинаковой частоте наиболее быстрой окажется оперативка с меньшей задержкой. Собственно, именно на основе этого и стоит подбирать самые подходящие для вас планки ОЗУ. В общем виде этот алгоритм выглядит так:

      Источники:

      xeon-e5450.ru/podbiraem-tajmingi-dlya-ddr3/

      dilios.ru/raznoe/kakie-tajmingi-luchshe-dlya-ddr3-1600.html

      overclockers.ru/lab/show/47377_4/Testirovanie_modulej_operativnoj_pamyati_DDR3-1333_i_DDR3-1600_obemom_8_Gbajt

      hd01.ru/info/kak-podobrat-tajmingi-operativnoj-pamjati-ddr3/

      ichip.ru/sovety/ekspluataciya/taymingi-operativnoy-pamyati-razbiraemsya-kakie-znacheniya-luchshe-555212

  • Оставить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *